Hello!

Myself FARHAN, I am a Ph.D. Student

NATIONAL UNIVERSITY OF COMPUTER & EMERGING SCIENCES (NUCES-FAST)

"FAST-MT PARTICIPATION FOR THE JOKER CLEF-2022 AUTOMATIC PUN AND HUMOUR TRANSLATION TASKS"

Classify and explain instances of wordplay

Given a Wordplay along with its Id, predict the values of the following columns

- Location
- Interpretation
- Horizontal/Vertical
- Conventional Form -
- Manipulation Type
- Manipulation Level
- Cultural Reference
 - Offensive

- We have classified each token of the given wordplay into the following types.
- word_play_token_B:
 - To identify the word which begins the wordplay.
- word_play_token_I:
 - To identify the other remaining words in the wordplay.
- Other_token:
 - To identify all the words which don't belong to the wordplay.

Example of Token classification

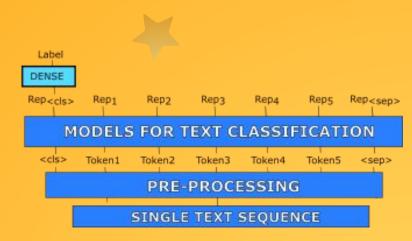
Example:

- English Text: Follow your knows.
- Processed Tokenized Text: [Follow, your, knows]
- Expected Output: [Other_token, Other_token, word_play_token_B]

Models for Token classification

Models used for token classification

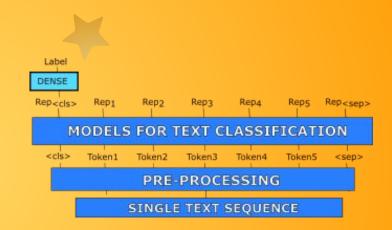
- Pre-trained BERT BASE
- KEY BERT: with two embeders
 - With fine-tuned BERT BASE
 - With pre-trained all-MiniLM-L6-v2



Example of Text classification

Example:

- **English Text:** Follow your knows.
- **Processed Tokenized Text:** [Follow, your, knows]
- **Expected Output:**
 - Horizontal/Vertical: "vertical"
 - **Manipulation type:** "similarity"
 - Manipulation level: "sound"
 - Cultural reference: "false"
 - Conventional form: "false"
 - Offensive: "none"



Models for Text classification

Models used for text classification

- Pre-trained DistilBERT
- Make its 6 copies and fine tune them for each categorical target column.

Models for Text Generation

We have fine tuned GPT-2 to generate interpretation for a given wordplay

Example:1

Model Input:

- "follow your knows"

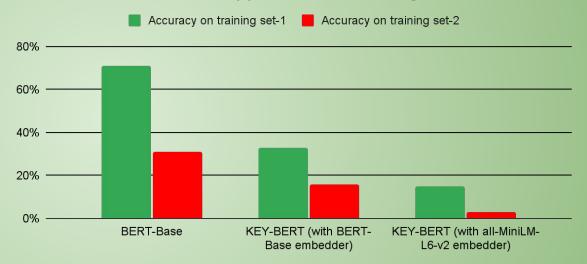
Expected Output:

(knows/nose)

Example:2

Model Input:

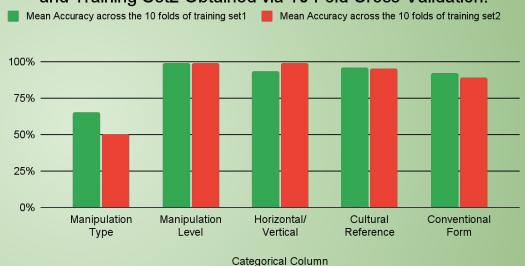
- "in the dark follow the son"


Expected Output:

- (son/sun)

Performance of the Models

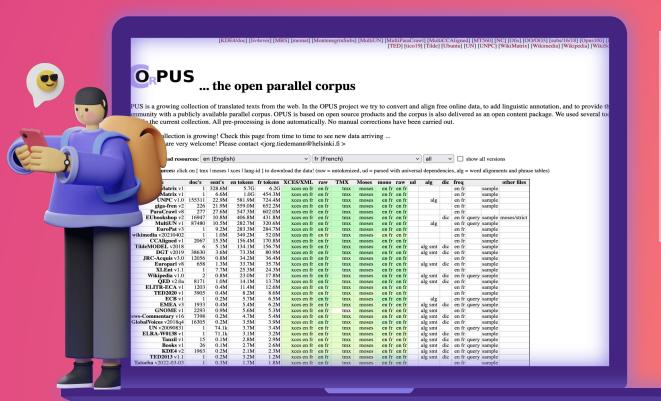
Obtained Accuracy on 9% of the Records Independently Extracted via Holdout Approach from training Set1 and Set2.


Model

BERT-Base model provides the best performance to locate the wordplay in the given English text via token classification.

Performance of the Models

Mean Accuracy of the DistilBERT Model on the Training Set1 and Training Set2 Obtained via 10 Fold Cross-Validation.


Overall the Distilbert model has performed better on the training set1 for predicting labels of categorical columns via text classification.

2. Translate single words (nouns) containing wordplay

Given an English noun, generate its corresponding French translation.

COLUMN	<u>EXPLANATION</u>
ld	A unique identifier for the given English noun.
En	An English noun containing a wordplay.
Fr	French translation for the English noun.

STEP-1

Download the English/French Parallel corpus from OPUS to extract contexts for the given English nouns

English/French nouns of the training set

<u>id</u>	<u>en</u>	<u>fr</u>
noun_1	Obelix	Obélix

English/French extracted sentence pairs from the OPUS parallel corpus

<u>en</u>	<u>fr</u>
asterix and obelix should stay in the village and not go in the forest	astérix et obélix ne devraient plus quitter le village.
asterix and obelix are cartoon characters.	astérix et obélix sont des personnages de dessins animés.
asterix and obelix are funny.	astérix et obélix sont drôles.

STEP-1

Download the
English/French
Parallel corpus from
OPUS to extract
contexts for the
given English nouns

STEP-2

For each English/French nouns from the data set. Extract those English/ French parallel sentences that contains the selected English/French nouns.

STEP-1

Download the
English/French
Parallel corpus from
OPUS to extract
contexts for the
given English nouns

STEP-2

For each English/French nouns from the data set. Extract those English/ French parallel sentences that contains the selected English/French nouns.

STEP-3

Transform the extracted English/French parallel sentence pairs for each English/French nouns of the data set into extractive Q/A styled data

<u>id</u>	<u>question</u>	<u>Context</u>	<u>Answers</u>
1	Obelix	astérix et obélix ne devraient plus quitter le village.	{"text": [Obélix], "answer_start": [11]}
2	Obelix	astérix et obélix sont des personnages de dessins animés.	{"text": [Obélix], "answer_start": [11]}

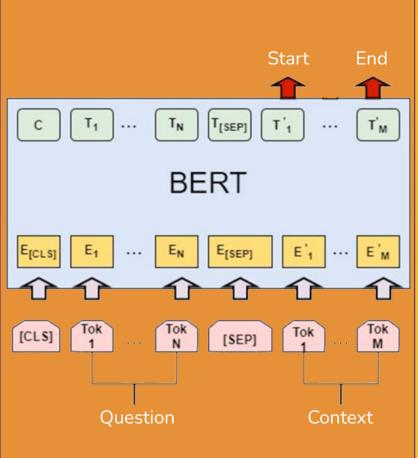
Transformed English/French nouns of the training data set

STEP-2

<u>Test</u> <u>set</u>		
<u>id</u>	<u>en</u>	<u>fr</u>
noun_1	Obelix	predict
nount_2	lompaland	perdict

Download the English/French Parallel corpus from OPUS to extract contexts for the

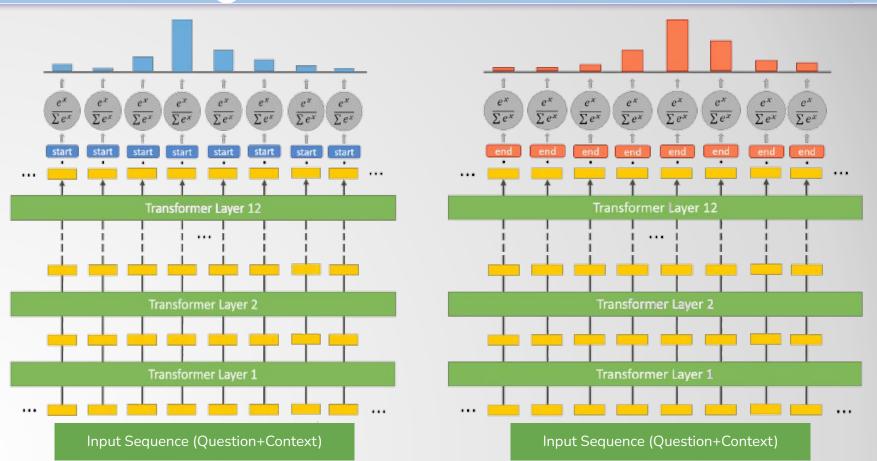
given English nouns


For each English/French nouns from the data set. Extract those English/ French parallel sentences that contains the selected English/French nouns.

Transform the extracted
English/French parallel
sentence pairs for each
English/French nouns of
the data set into
extractive Q/A styled data

STEP-3

<u>id</u>	<u>question</u>	<u>Context</u>
1	Obelix	astérix et obélix ne devraient plus quitter le village.
2	lompaland	j'étais venu à lumpaland pour chercher de nouvelles saveurs.



TASK-2 Extractive Q/A Models

Showcasing high level working of Extractive Q/A models

- Question: Obelix (length of 1 token)
- Context: Astérix et obélix ne devraient plus quitter le village.
- Expected: start_value=11
- Expected: end_value=17

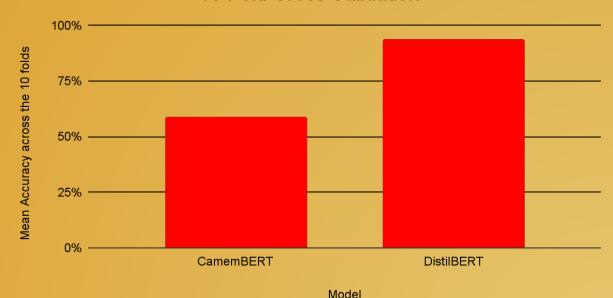
Predicting start/end of Translation

Models for Extractive Q/A

Transformed English/French nouns of the training data set

<u>id</u>	question	<u>Context</u>	<u>Answers</u>
	Obelix	astérix et obélix ne devraient plus quitter le village.	{"text": [Obélix], "answer_start": [11]}
2	Obelix	astérix et obélix sont des personnages de dessins animés.	{"text": [Obélix], "answer_start": [11]}

Models used for Extractive Q/A


- DistillBERT
 - English Query and English context
- CamemBERT
 - French Query and French context

Performance of the Models

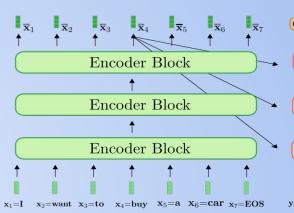
Obtained Mean Accuracy on the Transforrmed Training Set via 10 Fold Cross Validation

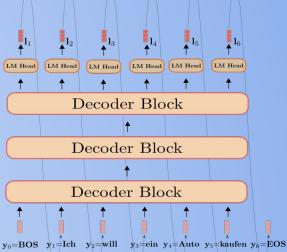
In our experiment, DistilBERT Model has given the best results.

Translate entire English phrases containing wordplay

Given an English sentence, generate its corresponding French version.

COLUMN	<u>EXPLANATION</u>
ld	A unique identifier for the English phrase.
En	An English phrase containing a wordplay.
Fr	French translation for the English phrase.

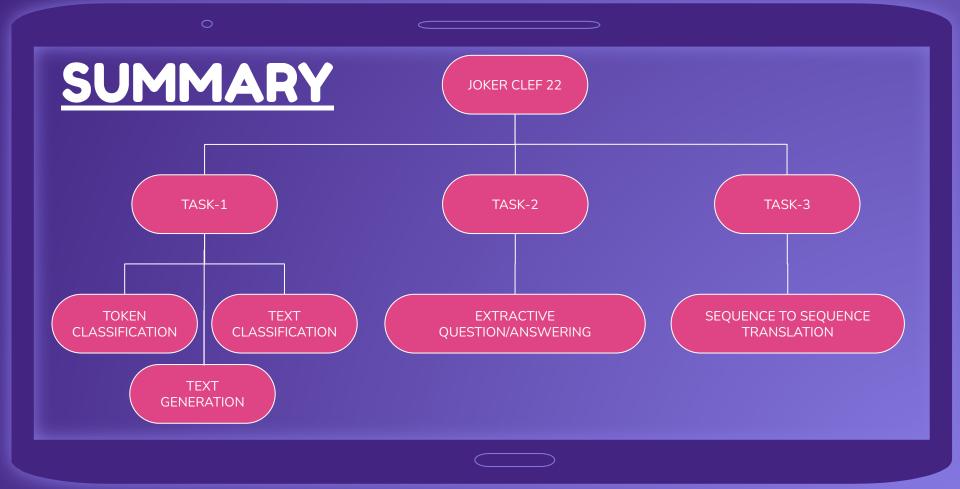




TASK-3: Sequence to Sequence Models

- 1 Helsinki-NLP/opus-mt-en-fr
- 3 Google T5 Small

- 2 Google T5 Base
- 4 Google T5 Large


Performance of the Models

Obtained Average BLEU and TER Scores on the Train set

In our experiment, Helsinki-NLP Model has given the best results.

SUMMARY

Thanks!

Dr. Muhammad Rafi

JOB TITLE

Professor and Coordinator
FAST NUCES

Dr. Muhammad Atif Tahir

JOB TITLE

Professor and Director

FAST NUCES

Liana Ermakova SPECIAL THANKS TO JOKER 22 TEAM

Any questions?

You can find me at k214808@nu.edu.pk

